đặt \(\frac{a}{2020}=\frac{b}{2021}=\frac{c}{2022}=k\Rightarrow\hept{\begin{cases}a=2020k\\b=2021k\\c=2022k\end{cases}}\)
Khi đó \(A=\frac{a-b+c}{a+2b-c}=\frac{2020k-2021k+2022k}{2020k+2\cdot2021k-2022k}=\frac{2021k}{4040k}=\frac{2021}{4040}\)
\(\frac{a}{2020}=\frac{b}{2021}=\frac{c}{2020}=\frac{a-b+c}{2020-2021+2022}=\frac{a-b+c}{2021}\)
\(\frac{a}{2020}=\frac{2b}{2021.2}=\frac{c}{2022}=\frac{a+2b-c}{2020+4042-2022}=\frac{a+2b-c}{4040}\)
\(\Rightarrow\frac{a-b+c}{2021}=\frac{a+2b-c}{4040}\Rightarrow A=\frac{a-b+c}{a+2b-c}=\frac{2021}{4040}\)