\(a^2-ab+b^2\) \(⋮\)\(9\)
=> \(4\left(a^2-ab+b^2\right)\)\(⋮\)\(9\)
<=> \(3\left(a-b\right)^2+\left(a+b\right)^2\) \(⋮\)\(9\) (1)
hay \(3\left(a-b\right)^2+\left(a+b\right)^2\)\(⋮\)\(3\)
mà \(3\left(a-b\right)^2\)\(⋮\)\(3\)
=> \(\left(a+b\right)^2\)\(⋮\)\(3\) => \(a+b\)\(⋮3\) (*)
Do 3 là số nguyên tố nên suy ra: \(\left(a+b\right)^2\)\(⋮\)\(9\) (2)
Từ (1) và (2) => \(3\left(a-b\right)^2\)\(⋮\)\(9\) => \(\left(a-b\right)^2\)\(⋮\)\(3\) => \(a-b\)\(⋮3\) (**)
Từ (*) và (**) => đpcm