so sánh D với 1 phần 2:
D=\(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\)
So sánh \(A=\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\)VÀ \(B=\frac{1}{2}\)
1. tính A= \(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{899}{30^2}\)
2. tính B= \(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}...\frac{30}{62}.\frac{31}{64}\)
3. So sánh C= \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)với \(\frac{1}{21}\)
4. So sánh D= \(\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{100}\right)\)với \(\frac{11}{19}\)
Cho \(P=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}+\frac{1}{64}\)
So sánh P với 3
Cho A= \(\frac{1}{4}\)+ \(\frac{1}{5}\) + \(\frac{1}{6}\)+...+ \(\frac{1}{63}\). So sánh A với 2.
Cho A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\)
a)so sánh A với 1
b)so sánh A với \(\frac{3}{2}\)
Bài 1: So sánh:
A=\(\frac{2}{3}\)+ \(\frac{14}{15}\)+ \(\frac{34}{35}\)+ \(\frac{62}{63}\)+ \(\frac{98}{99}\)+ \(\frac{142}{143}\)+ \(\frac{194}{195}\)
B= 5+ \(\frac{1}{2^2}\)+ \(\frac{1}{3^3}\)+ \(\frac{1}{4^4}\)+ \(\frac{1}{5^5}\)+ \(\frac{1}{6^6}\)+ \(\frac{1}{7^7}\)
Bài 2: Chứng minh:
C=\(\frac{1}{5}\)+ \(\frac{1}{13}\)+ \(\frac{1}{14}\)+ \(\frac{1}{15}\)+ \(\frac{1}{61}\)+\(\frac{1}{62}\)+ \(\frac{1}{63}\)< \(\frac{1}{2}\)
cho:
a) A= 2+\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{62}+\frac{1}{63}+\frac{1}{64}+\frac{1}{65}+\frac{1}{66}+\frac{1}{67}\)
chứng minh rằng A>5
b) B= \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{89^2}+\frac{1}{90^2}\)
chứng minh rằng \(\frac{40}{91}\)<B<1
AI GIÚP TỚ VỚI!!!
A) TÌM X
1) \(\left(\frac{1}{12}+3\frac{1}{6}-30,75\right).x-8=\left(\frac{3}{5}+0,415+\frac{1}{200}\right):0,01\)
2) \(\left(\frac{1}{1.101}+\frac{1}{2.102}+...+\frac{1}{10.110}\right).x=\frac{1}{1.11}+\frac{1}{2.12}+...+\frac{1}{100.110}\)
B) CHO:
\(M=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}+\frac{1}{20}\); \(N=\frac{5^2}{5.10}+\frac{5^2}{10.15}+...+\frac{5^2}{2000.2005}+\frac{5^2}{2005.2010}\)
a) Tính tổng M
b) So sánh M và N
C) CHỨNG TỎ RẰNG
a)\(S=\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{2}\)