So sánh\(\frac{A}{B}\) và\(1\frac{2015}{2016}\)biết:
\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{4030};B=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4029}\)
Cho A = \(\frac{\left(3\frac{2}{5}+\frac{1}{5}\right):2\frac{1}{2}}{\left(5\frac{3}{7}-2\frac{1}{4}\right):4\frac{43}{56}}\)và B = \(\frac{1,2:\left(1\frac{1}{5}-1\frac{1}{4}\right)}{0,32+\frac{2}{25}}\)
So sánh A và B
Cho A = \(\frac{\left(3\frac{2}{5}+\frac{1}{5}\right):2\frac{1}{2}}{\left(5\frac{3}{7}-2\frac{1}{4}\right):4\frac{43}{56}}\); B = \(\frac{1,2:\left(1\frac{1}{5}-1\frac{1}{4}\right)}{0,32+\frac{2}{25}}\)
So sánh A và B
Cho \(A=\frac{\left(3\frac{2}{15}+\frac{1}{15}\right):2\frac{1}{2}}{\left(5\frac{3}{7}-2\frac{1}{4}\right):4\frac{43}{56}}\)
\(B=\frac{1;2:\left(1\frac{1}{5}:1\frac{1}{4}\right)}{0,32+\frac{2}{25}}\)
So sánh A và B
a) so sánh \(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+\frac{5}{6}\) và 4
b)\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\)và 1
Cho A = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
B = \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
a) So sánh A và B
b) Chứng minh A = \(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\)
Bài 1 :Chứng tỏ rằng :
\(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}\)\(-\frac{5}{3}+\frac{3}{2}-1\)
Bài 2 : Cho
\(A=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{4998}{4999}\)
Hãy so sánh A và 0,02
1)Cho A=\(\frac{196}{197}\)+\(\frac{197}{198}\)
B=\(\frac{196+197}{197+198}\)
So sánh A và B
2)Cho B=\(\frac{1}{4}\)+\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{19}\).Chứng minh B>1
3)Tính nhanh
\(\frac{\frac{3}{5}+\frac{3}{7}-\frac{3}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{11}}\)
Cho A= \(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{4026}\)
B= \(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+.....+\frac{1}{4025}\)
So sánh \(\frac{A}{B}\)và \(1\frac{2013}{2014}\)