Câu 1 : Cho a,b,c>0 thỏa mã ab+bc+ac=3. CMR : \(\frac{a}{2a^2+bc}+\frac{b}{2b^2+ac}+\frac{c}{2c^2+ab}\ge abc\)
Câu 2 : Cho a,b,c>0. CMR: \(\frac{2}{a}+\frac{6}{b}+\frac{9}{c}\ge\frac{8}{2a+b}+\frac{48}{3b+2c}+\frac{12}{c+3a}\)
cho cho a>0 b<0 cmr \(\frac{1}{a}\ge\frac{2}{b}+\frac{8}{2a-b}\)
Cho a>0 vaf b<0. CMR:
\(\frac{1}{a}\ge\frac{2}{b}+\frac{8}{2a-b}\)
Cho a,b,c > 0 thỏa mãn: ab + bc + ca = 3
CMR: \(\frac{a}{2a^2+bc}+\frac{b}{2b^2+ca}+\frac{c}{2c^2+ba}\ge abc\)
cho a,b>0 thỏa mãn a+b=4ab. CMR
\(\frac{a}{4b^2+1}+\frac{b}{4a^2+1}\ge\frac{1}{2}\)
Cho a,b,c >0 thỏa mãn abc=1. CMR: \(\frac{a}{ab+1}+\frac{b}{bc+1}+\frac{c}{ca+1}\ge\frac{3}{2}\)
cho a,b,c > 0 thỏa mãn abc=1.CMR
\(\frac{a}{ab+1}+\frac{b}{bc+1}+\frac{c}{ca+1}\ge\frac{3}{2}\)
Cho a;b;c > 0 thỏa mãn a + b + c = 1
CMR: \(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{15}{4}\)
cho a,b,c>0 thỏa mãn: a+b+c=1 CMR:
\(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}+\sqrt[3]{abc}\ge\frac{10}{9\left(a^2+b^2+c^2\right)}\)