1. Cho a,b,c là các số dương cmr:
\(\frac{2\sqrt{a}}{a^3
+b^2}+\frac{2\sqrt{b}}{b^3+c^2}
+\frac{2\sqrt{c}}{c^3+a^2}\le\frac{1}{a^2}
+\frac{1}{b^2}+\frac{1}{c^2}\)
2. CMR với mọi stn n thì \(n^2+n+1\)không chia hết cho 9
Cho a , b , c , n là các số dương
CMR \(a^{\left(n+1\right)\left(b+c\right)}+b^{\left(n+1\right)\left(a+c\right)}+c^{\left(n+1\right)\left(a+b\right)}\ge\frac{a^n+b^n+c^n}{2}\)
ten ten ten
1. Cho a,b,c>0 và a+b+c=1 CMR sigma\(\frac{a-bc}{a+bc}\le\frac{3}{2}\)
2. cho a,b,c>0 va abc=1 CMR sigma\(\frac{1}{a\left(b+1\right)}\ge\frac{3}{2}\)
3.(i think it is difficult for you)
ch a,b,c>0 CMR sigma\(\frac{b^2c^3}{a^2+\left(b+c\right)^3}\ge\frac{9abc}{4\left(3abc+ab^2+bc^2+ca^2\right)}\)
4. CMR với mọi n là số tự nhiên lớn hơn 1 thì \(\frac{1}{\sqrt{n^2+1}}+\frac{1}{\sqrt{n^2+2}}+...+\frac{1}{\sqrt{n^2+n}}< 1\)
Cho ba số thực dương a , b , c thỏa mãn \(a^2+b^2+c^2=3\); m , n là các số nguyên dương sao cho 2n \(\ge\) m. CMR:
\(m\left(a+b+c\right)+n\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge m\left(m+n\right)\)( ** ).
Cho a là số thực dương; n là số nguyên dương.
CMR : \(a^n+\frac{1}{a^n}-2\ge n^2\left(a+\frac{1}{a}-2\right)\)
1/ Cho mọi số nguyên dương .Chứng minh
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}<1\)
2/ Chứng minh bất dẳng thức sau với các số a, b, c dương.
\(\sqrt{\left(a+b\right)\left(c+d\right)}\ge\sqrt{ac}\)
3/ Chứng minh
a) \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{a+b+c}{2}\) (với a, b, c dương)
b) \(\frac{a^2}{a+b}-\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{a+b+c+d}{2}\) (với a, b, c dương)
bài 1 : a) cho đa thức P(x)= ax3+bx2+cx+d với a,b,c,d là các hệ số nguyên. CMR: nếu P(x) chia hết cho 5 với mọi giá trị nguyên của x thì các hệ số a,b,c,d đều chia hết cho 5
b) cho n là số tự nhiên lớn hơn 1. CMR: n4+4n là hợp số
bài 2: a) CMR: \(\frac{a^4+b^4}{2}>,=ab^3+a^3b-a^2b^2\)
b) cho a,b,c là 3 số dương thỏa mãn đk \(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{a+c+1}=2\)
TÌm GTLN của tích (a+b)(b+c)(c+a)
a) Cho các số a,b,c là các số hữu tỉ đôi một khác nhau CMR:
\(B=\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\) Là bình phương của một số hữu tỷ
b) Cho các số a,b,c là các số thực dương CMR: \(\frac{b^2+c^2}{a}+\frac{c^2+a^2}{b}+\frac{a^2+b^2}{c}\ge2\left(a+b+c\right)\)
c) Tìm tất cả các số nguyên dương n sao cho \(n^4+n^3+1\)là số chính phương
CMR: Số A= 12\(\sqrt{\left(n-1\right)n\left(n+1\right)\left(n+2\right)+1}\) +23 với mọi n là số nguyên dương có thể viết được thành tổng các bình phương của ba số nguyên dương lẻ liên tiếp.