Cho α , β là các số thực. Đồ thị các hàm số y = x α , y = x β trên khoảng 0 ; + ∞ được cho hình vẽ bên. Khẳng định nào sau đây đúng?
A. 0 < β < 1 < α
B. β < 0 < 1 < α
C. 0 < α < 1 < β
D. α < 0 < 1 < β
Hình vẽ sau là đồ thị của ba hàm số y = x α , y = x β , y = x γ với điều kiện x > 0 và α , β , γ là các số thực cho trước. Mệnh đề nào dưới đây đúng?
Cho các số thực α và β . Đồ thị các hàm số y = x α , y = x β trên khoảng 0 ; + ∞ như hình vẽ bên, trong đó đường đậm hơn là đồ thị của hàm số y = x β
Mệnh đề nào dưới đây đúng?
Cho các số thực α và β . Đồ thị các hàm số y = x β , y = x β trên khoảng 0 ; + ∞ như hình vẽ bên, trong đó đường đậm hơn là đồ thị của hàm số y = x β .
Mệnh đề nào dưới đây đúng?
Xét các khẳng định sau
i) Nếu hàm số y = f(x) xác định trên [-1;1] thì tồn tại α ∈ - 1 ; 1 thỏa mãn f ( x ) ≥ f ( α ) ∀ x ∈ - 1 ; 1 .
ii) Nếu hàm số y = f(x) xác định trên [-1;1] thì tồn tại β ∈ - 1 ; 1 thỏa mãn f ( x ) ≤ f ( β ) ∀ x ∈ - 1 ; 1 .
iii) Nếu hàm số y = f(x) xác định trên [-1;1] thỏa mãn f(-1).f(1)<0 thì tồn tại γ ∈ - 1 ; 1 thỏa mãn f ( γ ) = 0
Số khẳng định đúng là
A. 3.
B. 2.
C. 1.
D. 0.
Trong không gian Oxyz, cho hai mặt phẳng ( α ) : x + y + z - 1 = 0 và ( β ) : 2 x - y + m z - m + 1 = 0 , với m là tham số thực. Giá trị của m để ( α ) ⊥ ( β ) là
A. -1
B. 0
C. 1
D. -4
Tính khoảng cách giữa hai mặt phẳng (α) và (β) cho bởi các phương trình sau đây:
(α): x – 2 = 0
(β): x – 8 = 0.
Cho mặt phẳng ( α ) : 4 x + y + 2 z + 1 = 0 và ( β ) : 2 x - 2 y + z - 3 = 0 . Viết phương trình tham số của đường thẳng d là giao của α và β
Trong không gian Oxyz, cho hai mặt phẳng α : x+y+z-1=0và β : 2x-y+mz-m+1=0, với m là tham số thực. Giá trị của m để α ⊥ β là
A. -1
B. 0
C. 0
D. -4