** Xét a : 5 dư 1 => a = 5b + 1
=> \(a^2=\left(5b+1\right)^2=25b^2+10b+1\)
=> \(a^2\)chia 5 dư 1
Bạn xét ttu các TH và đặt lần lượt a = 5c + 2; a = 5d + 3; a = 5e + 4 và hiển nhiên a chia hết cho 5 thì \(a^2\)cũng chia hết cho 5 => Nhận được số dư là 0. Khi đó bạn cũng sẽ CM đc: \(a^2\): 5 dư 0 hoặc 1 hoặc 4.
** Xét a = 4f => \(a^2=16f^2⋮8\)=> \(a^2\)chia 8 dư 0
Xét a = 4g + 1 => \(a^2=\left(4g+1\right)^2=16g^2+8g+1\)chia 8 dư 1 => \(a^2\)cũng có thể chia 8 dư 1
Ttu xét a = 4h + 2 và a = 4k + 3 và thay vào \(a^2\)và phá ra cũng sẽ chứng minh được \(a^2\): 8 dư 0 hoặc 1 hoặc 4.
Vậy ta có ĐPCM