a,Ta có : an+1=1+2+....+n+(n+1)
\(\Rightarrow a_{n+1}=\frac{\left(n+2\right)\left[n:1+1\right]}{2}=\frac{\left(n+2\right)\left(n+1\right)}{2}\)
b,Ta lại có :\(\Rightarrow a=\frac{\left(n+1\right)\left[\left(n-1\right):1+1\right]}{2}=\frac{\left(n+1\right)\left(n\right)}{2}\)
\(\Rightarrow a_n+a_{n+1}=\frac{\left(n+2\right)\left(n+1\right)}{2}+\frac{\left(n+1\right)n}{2}\)
\(\Rightarrow a_n+a_{n+1}=\frac{\left(n+1\right)\left[\left(n+2\right)+n\right]}{2}=\frac{\left(n+1\right)\left(2n+2\right)}{2}\)
\(\Rightarrow a_n+a_{n+1}=\left(n+1\right)^2\)
=>ĐPCM