Lời giải:
Ta có công thức quen thuộc:
\(a_n=1+2+3+..+n=\frac{n(n+1)}{2}\)
\(a_{n+1}=1+2+3+...+n+(n+1)=\frac{(n+1)(n+2)}{2}\)
Do đó:
\(a_n+a_{n+1}=\frac{n(n+1)}{2}+\frac{(n+1)(n+2)}{2}=\frac{(n+1)(n+n+2)}{2}=(n+1)(n+1)=(n+1)^2\) là số chính phương với mọi số tự nhiên $n\geq 1$
Vậy $a_n+a_{n+1}$ là số chính phương.