chào nhân, quá dễ nhân à
chào nhân, quá dễ nhân à
Cho A là STN chỉ có 2 ước nguyên tố p và q. Gọi S là tổng tất cả các ước dương của A. Chứng minh rằng S< 2A
với mỗi số nguyên dương n, ta kí hiệu d(n) là số các ước nguyên dương của n và s(n) là tổng tất cả các ước nguyên dương đó .Chẳng hạn d(2018) = 4 vì 2018 có và chỉ có 4 ước Nguyên Dương là 1;2;1009; 2018 và s (2018) = 1 + 2 + 1009 + 2018 = 3030 Tìm tất cả các số nguyên dương x sao cho s(x).d(x)= 96
Với mỗi số nguyên dương n, ta kí hiệu d(n) là số các ước nguyên dương của n và s(n) là tổng tất cả các ước nguyên dương đó. Ví dụ, d(2018) = 4 vì 2018 có (và chỉ có) 4 ước nguyên dương là 1; 2; 1009; 2018 và s(2018) = 1 + 2 + 1009 + 2018 = 3030. Tìm tất cả các số nguyên dương x sao cho s(x) . d(x) = 96
Ta gọi số n là số hoàn hảo nếu tổng các ước dương của nó bằng 2n, ví dụ: 6 là số hoàn hảo. Hãy tìm tất cả các số hoàn hảo n sao cho n – 1 và n + 1 là các số nguyên tố.
Cho các số nguyên dương a,b thỏa mãn \(\frac{a+2}{b}\)+ \(\frac{b+3}{a}\)là một số nguyên dương . Gọi d là ước chung lớn nhất của a và b . Chứng minh rằng d2 <= 2a+3b
Cho a,b nguyên dương thỏa \(\frac{a+1}{b}+\frac{b+1}{a}\) cũng nguyên dương. Gọi d là ước dương của a và b. Chứng minh rằng \(d\le\sqrt{a+b}\)
Cho các số nguyên a> b> 0 và p là số nguyên tố (p> 3) sao cho p² là ước của a³ - b³. Chứng minh rằng p <a√3.
Cho tập M gồm 2018 số nguyên dương, mỗi số chỉ có ước nguyên tố không vượt quá 23. Chứng minh rằng tồn tại 4 số phân biệt trong M có tích là lũy thừa bậc 4 của một số nguyên
Cho p là một số nguyên tố và (a,p)=1. Gọi x là số nguyên dương nhỏ nhất sao cho ax=1 (mop p).
Chứng minh p là một ước số của p-1