Chứng minh rằng : Nếu số tự nhiên a không phải là số chính phương thì\(\sqrt{a}\)là số vô tỉ
Cho các số nguyên dương m, n không phải là số chính phương . Giả sử a, b là các số hữu tỉ sao cho \(a\sqrt{m}+b\sqrt{n}\)
là số hữu tỉ. CMR \(a\sqrt{m}+b\sqrt{n}=0\)
Chứng minh √7 là số vô tỉ.
Chứng minh rằng: Nếu số tự nhiên a không phải là số chính phương thì √a là số vô tỉ.
Có hai số vô tỉ dương nào mà tổng là số hữu tỉ không?
Chứng minh rằng tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.
Tìm các số a, b, c, d biết rằng: a2 + b2 + c2 + d2 = a(b + c + d)
cho a là một số tự nhiên khác 0. cmr a +\(\sqrt{a}\)là một số vô tỉ
cho a,b,c là các số nguyên dương. cmr nếu \(\sqrt{a}+\sqrt{b}+\sqrt{c}\)là số hữu tỉ thì a,b,c là các số chính phương
Cho a ko chính phương.cmr: căn a là số vô tỉ
cho a là 1 số tự nhiên .cmr a+\(\sqrt{a}\)ko chính phương
giả sử a,b là 2 số hữu tỉ dương, ko phải là bình phương của bất kì số hữu tỉ nào.
CMR Nếu r và s là 2 số hữu tỉ sao cho t=r\(\sqrt{a}\)+s\(\sqrt{b}\) la 1 so huu ti thi t=0
cho n là số nguyên dương và n không phải là số chính phương thì căn n là số vô tỉ