a+b+c=0
=>a+b=-c;b+c=-a;a+c=-b
Thay a+b=-c;b+c=-a;a+c=-b là M ta được:\(M=\frac{-c}{c}+\frac{-a}{a}+\frac{-b}{b}=-1-1-1=-3\)
a+b+c=0
=>a+b=-c;b+c=-a;a+c=-b
Thay a+b=-c;b+c=-a;a+c=-b là M ta được:\(M=\frac{-c}{c}+\frac{-a}{a}+\frac{-b}{b}=-1-1-1=-3\)
a, Cho :\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) và a,b,c khác 0 và a+b+c khác 0 . So sánh a, b, c .
b, Cho : \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)và x,y,z khác 0 ; x + y + z khác 0 . Tính \(\frac{x^{333}.y^{666}}{z^{999}}\)
c, Cho : ac = b2 ; ab = c2 ( a+b+c khác 0 ) . Tính \(\frac{b^{333}}{c^{111}.a^{222}}\)
Cho a,b ,c đều khác 0 và a+b+c khác 0
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
Tính M= (\(\left(1+\frac{b}{a}\right).\left(1+\frac{a}{c}\right).\left(1+\frac{c}{b}\right)\)
Cho ba số nguyên a,b,c đôi một khác nhau và khác 0 thỏa mãn:a+b+c=0
Tính giá trị của \(P=\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)\)
Cho a,b ,c khác 0 thoả mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
Tính A = \(\frac{a}{b+c}=\frac{a+b}{c}\)( b+c khác 0)
Cho 3 số a, b,c khác 0 và khác nhau ( b+c, a+c, a+b ) khác 0
TM điều kiện \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
Tính GT biểu thức \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)
Cho a,b,c là ba số khác 0 và a+b+c khác 0 thỏa mãn:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\). Tính giá trị của biểu thức: P=\(\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)với a,b,c,d khác 0,a khác b , c khác d . CMR \(\frac{a}{a-b}=\frac{c}{c-d}\)
Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)trong đó b khác 0 . CMR c = 0
MAI MÌNH NỘP RỒI GIÚP MÌNH VỚI
Cho 3 số a,b,c khác 0 và a + b + c khác 0 thõa mãn điều kiện : \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
Tính giá trị của biểu thức :
P = \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)
b)Cho a, b, c là các số khác 0 và a+b+c khác 0 sao cho : \(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)
Tính giá trị bằng số của biểu thức M=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)