\(A=\frac{abc}{a+b+c}=\frac{100a+10b+c}{a+b+c}=\frac{\left(a+b+c\right)+99a+9b}{a+b+c}=1+9.\frac{11a+b}{a+b+c}\)
A nhỏ nhất \(\Rightarrow\frac{11a+b}{a+b+c}\) nhỏ nhất => c lớn nhất => c = 9
Khi đó \(A=1+9.\frac{11a+b}{a+b+9}=1+9.\frac{a+b+9+10a-9}{a+b+9}=1+9+9.\frac{10a-9}{a+b+9}\)
Ta có \(10a-9\ge10.1-9>0\)
A nhỏ nhất \(\Rightarrow\frac{10a-9}{a+b+9}\) nhỏ nhất => b lớn nhất => b = 9
Khi đó: \(A=10+9.\frac{10a-9}{a+9+9}=10+9.\frac{10\left(a+18\right)-9-10.18}{a+18}=10+90-9.\frac{189}{a+18}\)
A nhỏ nhất => \(-9.\frac{189}{a+18}\)nhỏ nhất => \(\frac{189}{a+18}\) lớn nhất => a nhỏ nhất => a = 1
Vậy: A nhỏ nhất khi a = 1; b = c = 9.