Cho A = \(\frac{50}{111}\)+\(\frac{50}{112}\)+\(\frac{50}{113}\)+\(\frac{50}{114}\). Chứng tỏ 1<a<2
Cho A=\(\frac{50}{111}+\frac{50}{112}+\frac{50}{113}+\frac{50}{114}\)
CMR 1<A<2
Cho A=\(\frac{50}{111}+\frac{50}{112}+\frac{50}{113}+\frac{50}{114}\). Chứng tơ \(1< A< 2\)
Bài 1 :Chứng tỏ rằng :
\(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}\)\(-\frac{5}{3}+\frac{3}{2}-1\)
Bài 2 : Cho
\(A=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{4998}{4999}\)
Hãy so sánh A và 0,02
Cho S =\(\frac{1}{50}\)+\(\frac{1}{51 }\)+\(\frac{1}{52}\)+...+\(\frac{1}{98}\)+\(\frac{1}{99}\)
Chứng tỏ rằng S >\(\frac{1}{2}\)
DDODOGDOGE
a=\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\) chứng tỏ a ko có giá trị số nguyên
Chứng tỏ:
\(\frac{1}{26}\)+\(\frac{1}{27}\)+...+\(\frac{1}{50}\)=\(\frac{99}{50}\)-\(\frac{97}{49}\)+...+\(\frac{3}{2}\)-1
Chứng minh rằng : \(\frac{1}{112^2}+\frac{1}{112^2}+\frac{1}{113^2}+\frac{1}{114^2}+\frac{1}{115^2}<\frac{1}{2.5.11.23}\)
Chứng minh rằng : \(\frac{1}{112^2}+\frac{1}{112^2}+\frac{1}{113^2}+\frac{1}{114^2}+\frac{1}{115^2}<\frac{3}{2.5.11.23}\)