Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Viên Như

Cho A :\(\frac{1}{2x2}+\frac{1}{3x3}+\frac{1}{4x4}+...........+\frac{1}{2011x2011}\)

a, So sánh A với 1

b, So sánh A với \(\frac{3}{4}\)

Nguyễn Phương Uyên
18 tháng 10 2018 lúc 17:40

a, \(A=\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{2011\cdot2011}\)

có :

\(\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)

\(\frac{1}{4\cdot4}< \frac{1}{3\cdot4}\)

...

\(\frac{1}{2011\cdot2011}< \frac{1}{2010\cdot2011}\)

nên :

\(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2010\cdot2011}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)

\(\Rightarrow A< 1-\frac{1}{2011}\)

\(\Rightarrow A< \frac{2010}{2011}< 1\)

b, \(A=\frac{2010}{2011}=1-\frac{1}{2011}\) 

\(\frac{3}{4}=1-\frac{1}{4}\)

\(\frac{1}{4}>\frac{1}{2011}\)

nên :

\(A>\frac{3}{4}\)

Nông Bình Minh
19 tháng 3 2020 lúc 10:57

a, A bé hơn 1

b, A bé hơn 3/4

Khách vãng lai đã xóa
Đao Thanh Binh
3 tháng 7 2020 lúc 19:52

hello mây chế

Khách vãng lai đã xóa

Các câu hỏi tương tự
Vu Tuan
Xem chi tiết
Ran Ắk ωυỷ ✿
Xem chi tiết
Pham Van Tung
Xem chi tiết
Bùi Minh Chính
Xem chi tiết
Nguyễn Lê Thảo My
Xem chi tiết
Phạm Tùng Lâm
Xem chi tiết
Huỳnh Ngọc Minh Trí
Xem chi tiết
BBoy Công Nghệ
Xem chi tiết
Edogawa Conan
Xem chi tiết