1 CMR:
B=\(\frac{4}{3}+\frac{7}{3^2}+\frac{10}{3^3}+.....+\frac{3n+1}{3^n}< \frac{11}{4}\)(n thuộc N*;n>3)
A=\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}< \frac{3}{4}\)
C=\(\frac{2}{3}+\frac{8}{9}+\frac{26}{27}+...+\frac{3^{20}-1}{3^{20}}>19\frac{1}{2}\)
CMR: \(\frac{1}{10^2}+\frac{1}{11^2}+\frac{1}{12^2}+...+\frac{1}{100^2}>\frac{3}{4}\)
1) Cho \(A=\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{9}{1000!}.CMR:A< \frac{1}{9!}\)
2) \(CMR:\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
Ai giúp mk sẽ đc thưởng 3 tick , phải ghi chép đầy đủ nha
a,A=\(2\frac{1}{2}:\left(\frac{-1}{2}\right)^2-\frac{1}{-3}.\left(\frac{-1}{2}-\frac{4}{3}:\frac{-8}{9}\right)\)
b,B=\(\left(3\frac{10}{99}+4\frac{11}{99}-\frac{58}{299}\right).\left(\frac{1}{2}-\frac{4}{3}-\frac{1}{6}\right)\)
a) CMR: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{3}{4}\)
b) CMR: \(\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{\left(2n+1\right)^2}< \frac{1}{4}\)
1.Cho A =\(\frac{5n-11}{n-2}\left(n\inℤ\right)\)
a. Tìm điều kiện n để A là phân số
b.Tìm n \(\inℤ\)để A có giá trị nguyên
c.Tìm giá trị lớn nhất của A
2.Tìm x
a. \(\frac{3}{4}\times\left(\frac{1}{2}x+\frac{1}{3}\right)-\frac{1}{2}=\frac{2}{3}x-\frac{1}{4}\)
b.\(\frac{2}{3}x-3x+\frac{1}{5}=\frac{3}{2}\left(x-\frac{1}{4}\right)-\frac{3}{2}\)
3.a.Chứng tỏ :
\(\frac{1}{7^2}+\frac{1}{8^2}+..................+\frac{1}{99^2}< \frac{1}{6}\)
b.Chứng tỏ:
\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+............+\frac{1}{23}< 3\)
Chứng tỏ rằng
a)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{99^2}+\frac{1}{100^2}< \frac{3}{4}\)
b)\(4+2^2+2^3+2^4+.....+2^{10}=2^{11}.\)
a)\(\frac{1}{10^2}+\frac{1}{11^2}+\frac{1}{12^2}+...+\frac{1}{100^2}<\frac{3}{4}\)
b)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<\frac{99}{100}\)
c)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<\frac{3}{4}\)
a)\(\frac{7}{x}<\frac{x}{4}<\frac{10}{x}\)
b) Cho A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\). Chứng tỏ: \(\frac{8}{9}>A>\frac{2}{5}\)