Cho A=\(\frac{1}{201}\)+\(\frac{1}{202}\)+\(\frac{1}{203}\)+...+\(\frac{1}{300}\).Chứng minh rằng A<\(\frac{9}{20}\)? Làm ơn giúp mik nha!
Cho A = 1/200+1/201+1/202+1/203+.......+1/300 . Chứng minh rằng A <9/20
\LÀM TRỘI-LÀM GIẢM
Bài 1: cho A=\(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{500}\) . Chứng minh A>\(\frac{5}{7}\), A>\(\frac{3}{4}\)
Bài 2: Cho B=\(\frac{1}{^{2^2}}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}\)Chứng minh A>\(\frac{1}{2}\), A>1
So sánh phân số
A/ \(\frac{2009}{2010}\)và\(\frac{2010}{2011}\)
B/ \(\frac{1}{3^{400}}\) và \(\frac{1}{4^{300}}\)
C/\(\frac{200}{201}+\frac{201}{202}và\frac{200+201}{201+202}\)
D/\(\frac{2008}{2008\cdot2009}và\frac{2009}{2009\cdot2010}\)
chứng tỏ rằng :
\(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+....+\frac{1}{400}>\frac{1}{2}\)
Cho A=1/201 + 1/202 +...+1/300. Chứng minh rằng A < 9/20
( giúp mik nha , ai trả lời câu hỏi đầu tiên mik sẽ tick cho)
so sánh:
\(\frac{2009}{2010}và\frac{2010}{2011}\)\(\frac{1}{3^{400}}và\frac{1}{4^{300}}\)
\(\frac{200}{201}+\frac{201}{202}và\frac{200+201}{201+202}\)\(\frac{2008}{2008.2009}và\frac{2009}{2009.2010}\)
Chứng minh rằng : \(\frac{1}{5}+\frac{1}{15}+\frac{1}{25}+....+\frac{1}{1985}< \frac{9}{20}\)
1/TÍNH NHANH
a/ \(\frac{\left(2^3.5.7\right).\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}\)
2/so sánh
a/\(\frac{2009}{2010}va\frac{2010}{2011}\) b/\(\frac{1}{3^{400}}va\frac{1}{4^{300}}\) c/\(\frac{200}{201}+\frac{201}{202}va\frac{200+201}{201+202}\) d/\(\frac{2008}{2008+2009}va\frac{2009}{2009+2010}\)
3/TÌM X BIẾT
\(\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{97.99}\right)-x=\frac{-100}{99}\)
GIÚP MÌNH NHA MAI MÌNH NỘP RÙI