cho \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+...+\frac{1}{99.100}\)và \(B=\frac{1}{2.4}+\frac{1}{6.8}+\frac{1}{10.12}+\frac{1}{14.16}+...+\frac{1}{198.200}\)Khi đó tỉ số \(\frac{A}{B}\)=.........
Cho A=\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+...+\frac{1}{99.100}v\text{à}B=\frac{1}{2.4}+\frac{1}{6.8}+\frac{1}{10.12}+\frac{1}{14.16}+...+\frac{1}{198.200}\) khi đó tỉ số\(\frac{A}{B}\)=
Giúp mình với
Cho A\(=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+...+\frac{1}{99.100}\)
B\(=\frac{1}{2.4}+\frac{1}{6.8}+\frac{1}{10.12}+\frac{1}{14.16}+...+\frac{1}{198.200}\)
Tim ti so \(\frac{A}{B}\)
Cho A=1/1.2+1/3.4+1/5.6+1/7.8+.....+1/99.100
và B=1/2.4+1/6.8+1/10.12+1/14.16+.....+1/198.200
khi đó tỉ số A/B=?
Cho A=1/1.2+1/3.4+1/5.6+1/7.8+.....+1/99.100
và B=1/2.4+1/6.8+1/10.12+1/14.16+.....+1/198.200
khi đó tỉ số A/B=?
Chứng minh rằng:
a)\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}< \frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
b)\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}< 1-\frac{1}{2.3}\)
Cần gấp, ai nhanh mik tick nha
a)A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}< 1\)
b)B=\(\frac{1}{3}+\left(\frac{1}{3}\right)^2+\left(\frac{1}{3}\right)^3+...+\left(\frac{1}{3}\right)^{100}< \frac{1}{2}\)
c)\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)
d)A=\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}.CMR\frac{7}{12}< A< \frac{5}{6}\)
AI ĐÚNG MINK \(\left(TICK\right)\)CHO (làm đc trên 2 câu)
Cho A=\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+.......+\frac{1}{99.100}\)
và B=\(\frac{2013}{51}+\frac{2013}{52}+\frac{2013}{53}+.....+\frac{2013}{100}\)
Chúng minh rằng:\(\frac{B}{A}\)là một số nguyên
Cho A = \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)Chứng minh \(\frac{7}{12}\)< A < \(\frac{5}{6}\)
Chứng minh \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)