Cho A= \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{49^2}+\frac{1}{50^2}\)
CHỨNG MINH RẰNG A<2
Bài 1: Cho a, b, c\(\inℕ^∗\)và S =\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
Tìm giá trị nhỏ nhất của S
Bài 2: Chứng minh rằng : A =\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{49^2}+\frac{1}{50^2}>\frac{1}{4}\)
Chứng minh rằng :
\(\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+....+\frac{1}{49}+\frac{1}{50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}\)
Chứng minh rằng: \(A=\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{49^2}+\frac{1}{50^2}<2\)
Bài 1 :Chứng tỏ rằng :
\(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}\)\(-\frac{5}{3}+\frac{3}{2}-1\)
Bài 2 : Cho
\(A=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{4998}{4999}\)
Hãy so sánh A và 0,02
cho A= \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\) chứng minh rằng A<\(\frac{1}{2}\)
Chứng minh rằng
\(\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
Chứng minh rằng:\(\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+....+\frac{1}{49}+\frac{1}{50}=\frac{91}{50}-\frac{97}{49}+\frac{95}{48}-\frac{93}{47}+.....+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}=1\)
Chứng tỏ rằng \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{^{4^2}}+...+\frac{1}{49^2}+\frac{1}{50^2}