\(M=\frac{1}{a^2+b^2}+\frac{2}{ab}+4ab\)
\(=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+4ab+\frac{5}{4ab}\)
\(\ge\frac{4}{\left(a+b\right)^2}+2\sqrt{\frac{1}{4ab}.4ab}+\frac{5}{4ab}\)
( Nếu đi thi thì sẽ phải chứng minh \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) cái này nhân chéo và cô si là xong )
Ta có BĐT phụ: \(\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)( đúng )
\(\Rightarrow M\ge\frac{4}{1}+2+5=11\)
Dấu "=" xảy ra <=> a=b=1/2
Vậy ...