Cho a, b là các thực dương .Chứng minh ab(a^2+b^2)<=(a+b)^4/8
Cho a, b là các số thực dương. Chứng minh rằng:\(\frac{a}{b}+\frac{b}{a}+\frac{ab}{a^2-ab+b^2}\ge3\)
cho a, b, c là các số thực dương. Chứng minh (a+b)/(bc+a^2) + (b+c)/(ac+b^2) + (c+a)/(ab+c^2) <=1/a+1/b+1/c
cho a,b là các số thực dương thoar mãn a^3+b^3=a-b chứng minh rằng a^2+b^2+ab<1
Cho a,b, c là các số thực dương. Chứng minh rằng:
Chứng minh: \(a^2+b^2+c^2+\frac{9abc}{a+b+c}\ge2\left(ab+bc+ac\right)\)
Cho a,b là các số thực dương. Chứng minh: a2 + b2 +1 >= ab + a + b
Cho các số thực dương a, b, c thỏa mãn a + b + c = 3. Chứng minh rằng abc (1 + a^2)(1 + b^2)(1 + c^2) ≤ 8
Cho a, b là các số dương thỏa mãn điều kiện ab=1. Chứng minh rằng: \(\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\ge8\)\(8\)
Cho a,b là các số thực dương thỏa mãn
a^2+2ab+2b^2-2b=8
a)Chứng minh rằng :0<a+b<=3 (<= là bé hơn hoặc bằng)
b)tìm GTNN của biểu thức P=a+b+8/a+2/b