Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hồng Hạnh Phạm

Cho a, b là các số thực thỏa mãn : \(a^3-3a^2+5a-17\)\(=0\) và \(b^3-3b^2+5b+11=0\). Tính \(a+b\)

Mr Lazy
3 tháng 8 2016 lúc 11:42

Xét phương trình 

\(x^3-3x^2+5x-17=0\Leftrightarrow\left(x-1\right)^3+2\left(x-1\right)-14=0\text{ }\left(1\right)\)

Chứng minh (1) có 1 nghiệm duy nhất: 

+Phương trình bậc ba luôn có tối thiểu 1 nghiệm

+Giả sử (1) có 1 nghiệm là \(x=a\)

Nếu \(x>a\) thì \(x-1>a-1\Rightarrow\hept{\begin{cases}\left(x-1\right)^3>\left(a-1\right)^3\\x-1>a-1\end{cases}}\)

\(\Rightarrow\left(x-1\right)^3+2\left(x-1\right)-14>\left(a-1\right)^3+2\left(a-1\right)-14=0\) => (1) vô nghiệm

Nếu \(x< a\), tương tự, (1) cũng vô nghiệm.

Vậy (1) có duy nhất 1 nghiệm 

Xét phương trình 

\(y^3-3y^2+5y+11=0\text{ }\left(2\right)\)\(\Leftrightarrow\left(2-y\right)^3-3\left(2-y\right)^2+5\left(2-y\right)-17=0\)

Đây chính là phương trình (1) nhưng với biến \(2-y\) nên có nghiệm \(2-y=a\); mà theo đề bài, nghiệm của (2) là \(y=b\)

Nên \(2-b=a\)

\(\Rightarrow a+b=2\)

Nguyệt
16 tháng 8 2018 lúc 16:58

Xét phương trình 

x3−3x2+5x−17=0⇔(x−1)3+2(x−1)−14=0 (1)

Chứng minh (1) có 1 nghiệm duy nhất: 

+Phương trình bậc ba luôn có tối thiểu 1 nghiệm

+Giả sử (1) có 1 nghiệm là x=a

Nếu x>a thì x−1>a−1⇒{

(x−1)3>(a−1)3
x−1>a−1

⇒(x−1)3+2(x−1)−14>(a−1)3+2(a−1)−14=0 => (1) vô nghiệm

Nếu x<a, tương tự, (1) cũng vô nghiệm.

Vậy (1) có duy nhất 1 nghiệm 

Xét phương trình 

y3−3y2+5y+11=0 (2)⇔(2−y)3−3(2−y)2+5(2−y)−17=0

Đây chính là phương trình (1) nhưng với biến 2−y nên có nghiệm 2−y=a; mà theo đề bài, nghiệm của (2) là y=b

Nên 2−b=a

⇒a+b=2


Các câu hỏi tương tự
Châu Hữu Phát
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
tiểu an Phạm
Xem chi tiết
Châu Đặng Huỳnh Bảo
Xem chi tiết
Kirito Asuna Yui
Xem chi tiết
Đào Thị Hồng Ngọc
Xem chi tiết
NGUYỄN DOÃN ANH THÁI
Xem chi tiết
Lizy
Xem chi tiết