Câu hỏi của hoàng thị huyền trang - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo nhé!
Câu hỏi của hoàng thị huyền trang - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo nhé!
cho a,b,c thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=7;a+b+c=23;\sqrt{abc}=3\)Tính giá trị biểu thức\(N=\frac{1}{\sqrt{ab}+\sqrt{c}-6}+\frac{1}{\sqrt{bc}+\sqrt{a}-6}+\frac{1}{\sqrt{ac}+\sqrt{b}-6}\)
Cho a,b,c thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=7\);\(a+b+c=23\);\(\sqrt{abc}=3\)
Tính giá trị biếu thức A=\(\frac{1}{\sqrt{ab}+\sqrt{c}-6}+\frac{1}{\sqrt{bc}+\sqrt{a}-6}+\frac{1}{\sqrt{ca}+\sqrt{b}-6}\)
Cho a,b,c là 3 số dương thỏa mãn: \(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}=1\)Tính giá trị của biểu thức M =\(\frac{\sqrt{a}-\sqrt{b}}{c+\sqrt{abc}}+\frac{\sqrt{b}-\sqrt{c}}{a+\sqrt{abc}}+\frac{\sqrt{c}-\sqrt{a}}{b+\sqrt{abc}}\)
1: Cho biểu thức \(A=\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
a: Tìm ĐKXĐ của A và rút gọn A
b: Tìm tất cả các giá trị của x để A<-1
2: Cho 3 số dương a, b, c thỏa mãn \(a+b+c\le3\)Tìm giá trị nhỏ nhất của biểu thức
\(P=\frac{1}{a^2+b^2+c^2}+\frac{2018}{ab+bc+ca}\)
Cho các số thực dương a,b,c thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge1\). CMR:
\(\frac{a+b}{\sqrt{ab+c}}+\frac{b+c}{\sqrt{bc+a}}+\frac{c+a}{\sqrt{ca+b}}\ge3\sqrt[6]{abc}\)
Giải:
\(GT\Leftrightarrow ab+bc+ca\ge abc\)
\(\Rightarrow ab\le\frac{ab+bc+ca}{c}\)
\(\Rightarrow\frac{a+b}{\sqrt{ab+c}}\ge\frac{a+b}{\sqrt{\frac{ab+bc+ca}{c}+c}}=\frac{\left(a+b\right)\sqrt{c}}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)
Tương tự rồi cộng lại: \(VT\ge\frac{\left(a+b\right)\sqrt{c}}{\sqrt{\left(c+a\right)\left(c+b\right)}}+\frac{\left(b+c\right)\sqrt{a}}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{\left(c+a\right)\sqrt{c}}{\sqrt{\left(b+a\right)\left(b+c\right)}}\)\(\ge3\sqrt[3]{\sqrt{abc}}=3\sqrt[6]{abc}\)
Lần sau mấy bạn hỏi bài thì đăng lên nhé!
Cho 3 số thực dương a,b,c thỏa mãn: a + b + c = \(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\)
Tính giá trị biểu thức M = \(\frac{a+1}{\sqrt{a}+\sqrt{b}}+\frac{b+1}{\sqrt{b}+\sqrt{c}}+\frac{c+1}{\sqrt{c}+\sqrt{a}}\)
Come on!!!!!
Cho a,b,c là ba số thực dương thỏa mãn điều kiện a+b+c=1
Tìm giá trị lớn nhất của biểu thức P = \(\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\)
cho a, b, c là ba số thực dương thỏa mãn điều kiện a+b+c=1. Tìm giá trị lớn nhất của biểu thức:
\(P=\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\)
Cho a,b,c thỏa mãn \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1\)Tính:
H=\(\frac{\sqrt{a}-\sqrt{b}}{1+c}+\frac{\sqrt{b}-\sqrt{c}}{1+a}+\frac{\sqrt{c}-\sqrt{a}}{1+b}\)