Đáp án D.
Từ y(0)=3 và y(3)=3, ta có:
Hàm số đạt cực trị tại x = 3 nên
Do đó Do đó: nằm trong mặt cầu ở đáp án D.
Chú ý: Điểm M nằm trong mặt cầu tâm I bán kính R khi và chỉ khi I M ≤ R
Đáp án D.
Từ y(0)=3 và y(3)=3, ta có:
Hàm số đạt cực trị tại x = 3 nên
Do đó Do đó: nằm trong mặt cầu ở đáp án D.
Chú ý: Điểm M nằm trong mặt cầu tâm I bán kính R khi và chỉ khi I M ≤ R
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(0;-2;-l), B(-2;-4;3), C(l;3;-l) và mặt phẳng (P): x+y-2z-3=0 . Tìm điểm M ∈ ( P ) sao cho | M A + M B ⇀ + 2 M C ⇀ | đạt giá trị nhỏ nhất.
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(0; -2; -1), B (-2,-4,3), C (1;3;-1) và mặt phẳng (P): x + y -2z – 3 = 0. Tìm điểm M ∈ (P) sao cho M A → + M B → + 2 M C → đạt giá trị nhỏ nhất.
A . M 1 2 ; 1 2 ; - 1
B . M - 1 2 ; - 1 2 ; 1
C . M 2 ; 2 ; - 4
D . M - 2 ; - 2 ; 4
Trong không gian Oxyz cho mặt cầu (S): (x-1)²+ (y-2)²+ (z-3)²=9 và mặt phẳng (P): 2x-2y+z+3=0. Gọi M (a;b;c) là điểm trên mặt cầu sao cho khoảng cách từ M đến (P) lớn nhất. Khi đó:
A. a+b+c=8.
B. a+b+c=5.
C. a+b+c=6.
D. a+b+c=7.
Trong không gian Oxyz, cho mặt phẳng (P): x + y + z – 4 = 0 và 3 điểm A(1;2;1), B(0;1;2), C(0;0;3). Điểm thuộc (P) sao cho M A 2 + 3 M B 2 + 2 M C 2 đạt giá trị nhỏ nhất. Giá trị x 0 + 2 y - z 0 bằng
A. 2 9
B. 6 9
C. 46 9
D. 4 9
Trong không gian Oxyz, cho hai điểm A (0; 8; 2), B (9; -7; 23) và mặt cầu (S) có phương trình (S): (x - 5)2 + ( y + 3 )2 + (z + 2)2 = 72. Mặt phẳng (P): x + by + cz + d = 0 đi qua điểm A và tiếp xúc với mặt cầu (S) sao cho khoảng cách từ B đến mặt phẳng (P) lớn nhất. Giá trị của b + c + d khi đó là:
A. b + c + d = 2
B. b + c + d = 4
C. b + c + d = 3
D. b + c + d = 1
Trong không gian Oxyz cho mặt cầu ( S ) : ( x - 2 ) 2 + ( y - 1 ) 2 + ( z - 1 ) 2 = 9 và điểm M ( a ; b ; c ) ∈ ( S ) sao cho biểu thức P=2a+2b+2c đạt giá trị nhỏ nhất. Tính T=a+b+c.
A. 2
B. 1
C. -2
D. -1
Trong không gian với hệ trục tọa độ Oxyz cho 3 điểm A (1; 1; 1), B (0; 1; 2), C (-2; 1; 4) và mặt phẳng (P): x - y + z + 2 = 0. Tìm điểm N ∈ (P) sao cho S= NA2 + NB2 + NC2 đạt giá trị nhỏ nhất.
A . N - 4 3 ; 2 ; 4 3
B. N (-2; 0; 1)
C . N - 1 2 ; 5 4 ; 3 4
D. N (-1; 2; 1)
Trong không gian Oxyz cho điểm M(2;1;1) mặt phẳng α : x+y+z-4=0 và mặt cầu (S): x - 3 2 + ( y - 3 ) 2 + ( z - 4 ) 2 = 16 Phương trình đường thẳng α đi qua M và nằm trong α cắt mặt cầu (S) theo một đoạn thẳng có độ dài nhỏ nhất. Đường thẳng α đi qua điểm nào trong các điểm sau đây?
Trong không gian Oxyz, cho mặt cầu (S): (x-1)²+ (y-2)²+ (z-3)²=25 và hai điểm A (3;-2;6), B (0;1;0). Mặt phẳng (P):ax+by+cz-2=0 chứa đường thẳng AB và cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất. Tính giá trị của biểu thức M=2a+b-c.
A. M=2.
B. M=3.
C. M=1.
D. M=4.