cho a,b,c khác 0 và a-b-c=0
Tính giá trị của biểu thức P=\(\left(1-\frac{c}{a}\right)\left(1-\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\)
Cho a,b,c là các số khác 0 thỏa mãn: \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
Tính giá trị của biểu thức: P = \(\left(1+\frac{b}{a}\right).\left(1+\frac{c}{b}\right).\left(1+\frac{a}{c}\right)\)
Cho a,b,c thỏa mãn:
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\)= 2013
Tính giá trị biểu thức:
\(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\)
cho a,b,c khác 0 và a-b-c=0,tính giá trị của biểu thức:A=\(\left(1-\frac{c}{a}\right)\left(1-\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\)
cho các số a,b,c đôi một hác nhau và khác 0, thoả mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
tính giá trị biểu thức M=\(\left(1+\frac{a}{b}\right)\cdot\left(1+\frac{b}{c}\right)\cdot\left(1+\frac{c}{a}\right)\)
Cho a , b , c là số thực khác 0 thỏa mãn \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+b-a}{b}\)
Hãy tính giá trị biểu thức \(B=\left(1+\frac{b}{a}\right).\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)
cho a,b,c là 3 số thực khác 0,thỏa mãn điều kiện:\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
Hãy tính giá trị của biểu thức:\(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)
Cho a,b,c đôi một khác nhau và khác 0, thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
Hãy tính giá trị biểu thức\(P=\left(1+\frac{a}{b}\right).\left(1+\frac{b}{c}\right).\left(1+\frac{c}{a}\right)\)
cho a,b,c khác 0 và \(\frac{b+c-a}{c}=\frac{a+b+c}{b}=\frac{b-c+a}{a}\).Tính giá trị của biểu thức A=\(\frac{\left(b-a\right).\left(c+b\right).\left(a+c\right)}{a.b.c}\)