Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Thu Trang

Cho a + b + c \(\ne0\)  thỏa mãn điều kiện: abc = 16 và a+ b3 + c= 48. Tính giá trị của biểu thức P = \(\frac{a+b}{ab}.\frac{b+c}{bc}.\frac{c+a}{ca}\)

Phước Nguyễn
4 tháng 3 2016 lúc 19:37

Chú ý rằng, với đa thức  \(a^3+b^3+c^3-3abc\)  thì  ta có thể phân tích đa thức trên thành một nhân tử bằng cách dùng hằng đẳng thức, khi đó:

 \(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)  

                                           \(=\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b+c\right)\)

                                           \(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

                                           \(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-ab+c^2-3ab\right)\)

                                           \(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

 \(a^3+b^3+c^3-3abc=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)

 Nhận xét:  Nếu  \(a^3+b^3+c^3=3abc\)  thì  \(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\)  \(\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

\(\Leftrightarrow\)  \(^{a+b+c=0}_{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)  \(\Leftrightarrow\)  \(^{a+b+c=0}_{a=b=c}\)

                 \(------------------\)

Vì  \(abc=16\)  (theo giả thiết) nên \(a,\)  \(b,\)  \(c\ne0\) và  \(3abc=48\)  \(\left(1\right)\) 

Ta có:  \(a^3+b^3+c^3=48\)  \(\left(2\right)\)

Do đó, từ  \(\left(1\right)\)  và  \(\left(2\right)\)  suy ra  \(a^3+b^3+c^3=3abc\)  \(\left(=48\right)\)

                                          \(\Leftrightarrow\)  \(a^3+b^3+c^3-3abc=0\)

                                          \(\Leftrightarrow\)  \(\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)  \(\left(\text{*}\right)\) (theo nhận xét trên) 

Mà  \(a+b+c\ne0\)  nên  từ  \(\left(\text{*}\right)\)  suy ra  \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\), tức  \(a=b=c\)  \(\left(\text{**}\right)\)

Mặt khác, ta cũng có  \(abc=16\)  và  do  \(\left(\text{**}\right)\)  nên  \(a^3=16\)

Khi đó,  biểu thức  \(P\)  sẽ trở thành:

\(P=\frac{\left(a+b\right)}{ab}.\frac{\left(b+c\right)}{bc}.\frac{\left(c+a\right)}{ca}=\frac{2a}{a^2}.\frac{2a}{a^2}.\frac{2a}{a^2}=\frac{8a^3}{a^6}=\frac{8}{a^3}=\frac{8}{16}=\frac{1}{2}\)  (do  \(a\ne0\))


Các câu hỏi tương tự
Nguyễn Quỳnh Chi
Xem chi tiết
Huy Tran
Xem chi tiết
FL.Han_
Xem chi tiết
Khanh Pham
Xem chi tiết
Pain Thiên Đạo
Xem chi tiết
Xem chi tiết
Nguyễn Khắc Quang
Xem chi tiết
thục khuê nguyễn
Xem chi tiết
trang
Xem chi tiết