Cho a,b,c là các số thực dương thỏa mãn a+b+c=1
Chứng minh rằng: \(\frac{a+bc}{b+c}+\frac{b+ca}{c+a}+\frac{c+ab}{a+b}\ge\)\(2\)
Cho a,b,c là các số thực dương thỏa mãn a/a+1+b/b+1+c/c+1=2
Chứng minh rằng:ab+bc+ca>(hoặc)=12
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1. Tìm GTNN của M=1/18(ab+bc+ca)-a^2/3a+1-b^2/3b+1-c^2/3c+1
Cho a,b,c là các số thực dương thỏa mãn:\(a+b+c+abc=4\)
Chứng minh rằng:\(a+b+c\ge ab+bc+ca\)
cho các số dương a,b,c thỏa mãn điều kiện a+b+c=6. chững minh rằng: ab/6+a-c +bc/6+b-a + ca/6+c-b <=2
Cho 3 số thực dương a, b, c thỏa mãn (a+b)(b+c)(c+a)=1. Chứng minh ab+bc+ca nhỏ hơn hoặc bằng 3/4.help me
Cho các số thực dương a,b,c thỏa mãn a+b+c=3. Tính giá trị biểu thức
P=\(\dfrac{a-b}{3c+ab}\)+\(\dfrac{b-c}{3a+bc}\)+\(\dfrac{c-a}{3b+ca}\)
Cho \(a,b,c\)là các số thực dương thỏa mãn \(a+b+c=1\). Chứng minh rằng:
\(\frac{a+bc}{b+c}+\frac{b+ca}{c+a}+\frac{c+ab}{a+b}\ge2\)
Bài 1: Cho a,b,c là các số thực dương thỏa nãm a+b+c=1. Tìm GTNN của biểu thức
\(H=\frac{a+bc}{b+c}+\frac{b+ca}{c+a}+\frac{c+ab}{a+b}\)
Bài 2:Cho a,b là các số thực dương thỏa mãn \(a^2-6ab-2b^2=0\)
Tính giá trị của biểu thức \(P=\frac{ab}{a^2+2b^2}\)