Cho ba số a,b,c là 3 số khác 0 và a\(^2\)=bc. Chứng minh rằng \(\frac{a^2+c^2}{b^2+a^2}\)=\(\frac{c}{b}\)
cho a,b,c là các số khác 0 và đôi một khác nhau thỏa mãn:
\(\frac{ab+2}{b}=\frac{bc+2}{c}=\frac{ca+2}{a}\)
chứng minh rằng a2b2c2=8
Cho a,b,c là các số khác 0 và b khác c thoa mãn \(\frac{a^2+c^2}{a^2+b^2}=\frac{c}{b}\).Chứng minh rằng\(\frac{a}{b}=\frac{c}{a}\)
Cho x,y,z,a,b,c khác 0 và \(\frac{x^2-yz}{a}=\frac{y^2-xz}{b}=\frac{z^2-xy}{c}\).Chứng minh rằng \(\frac{a^2-bc}{x}=\frac{b^2-ac}{y}=\frac{c^2-ab}{z}\)
Bài 1
Cho \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\left(b\ne0\right)\)
Chững minh c=0
Bài 2
Cho tỉ lệ thức \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)
Chững minh a + b+ c+ d = 0
Bài 3
Cho \(\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{bz-cy}{a}\)
Chững mình rằng \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Bài 4
Cho a + b = c + d và \(a^2+b^2+c^2=c^2+d^2\left(a,b,c,d\ne0\right)\)
Chững minh rằng 4 số a,b, c, d lập thành 1 tỉ lệ thức
Bài 5
Cho \(\left(x1P-y1Q\right)^{2n}+\left(x2P+y2Q\right)^{2m}+...+\left(xkP-ykQ\right)^{2k}\le0\left(n,m,...,k\inℕ^∗;P,Q\ne0\right)\)
Chứng minh rằng \(\frac{x1+x2+x3+...+xk}{y1+y2+y3+...+yk}\)
Bài 6
Biết rằng \(\hept{\begin{cases}a1^2+a2^2+a3^2=P^2\\b1^2+b2^2+b3^2=Q^2\end{cases}}\) và \(a1\cdot b1+a2\cdot b2+a3\cdot b3=P\cdot Q\)
Chứng minh \(\frac{a1}{b1}=\frac{a2}{b2}=\frac{a3}{b3}=\frac{P}{Q}\)
Bài 7
Cho 4 số a, b, c, d khác 0 thảo mãn \(\left(ad+bc\right)^2=4abcd\)
Chững minh rằng 4 số a, b, c ,d có thê rlaapj thành 1 tỉ lệ thức
Bài 8
Cho các số a, b, c thảo mãn \(\frac{a}{2010}=\frac{b}{2011}=\frac{c}{2012}\)
a. Tính \(M=\frac{2a-3b+c}{2c-3b}\)
b. Chứng minh rằng \(a\cdot\left(a-b\right)\cdot\left(b-c\right)=\left(a-c\right)^2\)
Cho \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\) . Chứng minh rằng : nếu ba số a,b,c đều khác 0 thì từ ba số a,b,c ( có 1 số được dùng 2 lần ) có thể lập thành 1 tỉ lệ thức
Cho\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\) . Chứng minh rằng nếu ba số a,b,c đều khác 0 thì từ ba số a,b,c (có một số được dùng 2 lần) có thể lập thành một tỉ lệ thức.
1) Cho a^2+b^2/c^2+d^2=a.b/c.d với a,b,c,d khác 0 . Hãy Chứng Minh rằng a/b=c/d hoặc a/b=d/c
2) Tính tổng : A = c/a1.a2 + c/a2.a3 + .......+c/an-1.an Và a2 -a1=a3-a2=....=an-an-1 =k ( a1 là số hạng đầu tiêng , an là số hạng thứ n)
Cho \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)với a,b,c,d khác 0 ; c khác +d và -d . chứng minh rằng hoặc a/b = c/d hoặc a/b = d/c