Cho a; b; c là 3 số thỏa mãn điều kiện a^2+b^2+c^2+16=8a+4b. CMR: 10<= 4a+3b<=40
Cho a,b là các số thực thỏa mãn a^2 + ab + b^2 = 9a + 9b . CMR : ( 4a + 3b + 1 )/(a +b + 10) <2
cho a;b;c là các số thực dương thỏa mãn \(a^2+b^2+c^2=\frac{1}{3}\)CMR:\(\sqrt{\frac{\left(a+b\right)^3}{8ab\left(4a+4b+c\right)}}+\sqrt{\frac{\left(b+c\right)^3}{8bc\left(4b+4c+a\right)}}+\sqrt{\frac{\left(c+a\right)^3}{8ca\left(4c+4a+b\right)}}\ge a+b+c\)
Cho a2+b2+16=8a+4b. Giá trị nhỏ nhất của biểu thức S= 4a+3b là ?
Cho các số thực dương a,b,c thỏa mãn điều kiện a+b+c=9. Tìm giá trji lớn nhất của biểu thức
\(T=\frac{ab}{3a+4b+5c}+\frac{bc}{3b+4c+5a}+\frac{ca}{3c+4a+5b}-\frac{1}{\sqrt{ab\left(a+2c\right)\left(b+2c\right)}}\)
Cho 2 số thực a,b thay dổi thỏa mãn điều kiện a+b>= 1 và a>o
Tìm GTNN A=\(\frac{8a^2+b}{4a}\) + b2
Cho 4 số a,b,c,d thỏa mãn điều kiện :\(ac\ge2\left(b+d\right)\)
Cmr: có ít nhất 1 trong hai bất đẳng thức sau là sai :\(a^2< 4b;c^2< 4d\)
Cho a,b,c là 3 số không âm thỏa mãn điều kiện \(a^2+b^2+c^2< =2\left(ab+bc+ca\right)\) và p,q,r là 3 số thỏa mãn p+q+r=0
cmr apq+bqr+crp <=0
cho ba số thực dương a,b,c thỏa mãn a2+b2+c2=3. cmr \(\frac{1}{a}+\frac{3}{b}\)+\(\frac{5}{c}\ge\)4a2+3b2+2c2