Lời giải:
Vì $a+b+c=1$ nên:
\(P=\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=\frac{(a+1)(b+1)(c+1)}{abc}\)
\(=\frac{(a+a+b+c)(b+a+b+c)(c+a+b+c)}{abc}\)
Áp dụng BĐT Cô-si cho các số dương:
\(\left\{\begin{matrix} a+a+b+c\geq 4\sqrt[4]{a^2bc}\\ b+a+b+c\geq 4\sqrt[4]{b^2ac}\\ c+a+b+c\geq 4\sqrt[4]{abc^2}\end{matrix}.\right.\)
\(\Rightarrow (a+a+b+c)(b+a+b+c)(c+a+b+c)\geq 64\sqrt[4]{a^4b^4c^4}=64abc\) (nhân theo vế)
Do đó:
\(P\geq \frac{64abc}{abc}=64\)
Vậy \(P_{\min}=64\Leftrightarrow a=b=c=\frac{1}{3}\)