trong mặt phẳng tọa độ Oxy cho đường tròn (C): (x-1)^2+(y-1)^2 =25 và các điểm A(7;9), B(0;8). Tìm tọa độ điểm M thuộc (C) sao cho P=Ma+2MB đạt giá trị nhỏ nhất
Cho đường tròn (O,5) và a là điểm cố định trên đường tròn Gọi B C D là hai điểm di động trên đường tròn sao cho đoạn BC có độ dài không đổi bằng 8. gọi M là trung điểm của BC và G là trọng tâm tam giác ABC. khi B,C thay đổi trên đường tròn (O,5) thì tập hợp các điểm G là:
A. đường tròn có bán kính bằng 3
B. đường tròn có bán kính bằng 2
C. đường tròn có bán kính bằng 4
D. đường tròn có bán kính bằng 5
em đang cần gấp. cảm ơn ạ
trong mặt phẳng tọa độ Oxy cho đường tròn (C): (x-1)^2+(y-1)^2 =25 và các điểm A(7;9), B(0;8). Tìm tọa độ điểm M thuộc (C) sao cho P=Ma+2MB đạt giá trị nhỏ nhất
Có mấy điểm M ∈ C : y = x - 1 2 x + 2 sao cho tiếp tuyến với (C) tại M tạo với hai trục tọa độ một tam giác có trọng tâm nằm trên đường thẳng d: 4x + y = 0 ?Có mấy điểm sao cho tiếp tuyến với (C) tại M tạo với hai trục tọa độ một tam giác có trọng tâm nằm trên đường thẳng d: 4x + y = 0 ?
A: không có
B: 1
C: 2
D: 3
Trong mặt phẳng Oxy, cho hai điểm I(1; 2), M(-2; 3), đường thẳng d có phương trình 3x – y + 9 = 0 và đường tròn (C) có phương trình: x 2 + y 2 + 2 x − 6 y + 6 = 0 .
Hãy xác định tọa độ của điểm M’, phương trình của đường thẳng d’ và đường tròn (C’) theo thứ tự là ảnh của M, d và (C) qua
a) Phép đối xứng qua gốc tọa độ;
b) Phép đối xứng qua tâm I.
Cho hình chóp s.abcd , có đáy ABCD là hbh. Gọi H, K lần lượt là trung điểm SA, SC. Gọi G là trọng tâm tam giác ABC.
a) GHK và ABCD
b) Tìm giao điểm M của SD và GHK
c) Gọi E là trung điểm của HK. C/m G, E, M thẳng hàng
trên trục tọa độ Oxy cho đường thẳng d: 3x-2y+5=0 và A(4;7),B(2;1)
Tìm tọa độ điểm M thuộc d sao cho : giá trị tuyệt đối của MA-2MB nhỏ nhất
(MA và MB đều là vecto nhá)
∆ABC có 2 điểm B, C cố định, A chạy trên đường tròn (C) tâm O bán kính R. Biết (C) không qua B, C. Gọi M là trung điểm của BC, G là trọng tâm ∆ABC. Khi A chạy trên (C) thì G chạy trên đường tròn (C’) là ảnh của (C) qua phép biến hình nào sau đây?
A. Phép tịnh tiến theo vectơ A G →
B. Phép vị tự tâm A tỉ số 2 3 .
C. Phép vị tự tâm M tỉ số 1 3
D. Phép tịnh tiến theo vectơ M G → .
Cho hình chóp s.abcd đáy là hbh. Gọi H K lần lượt là trung điểm SA SC. G là trọng tâm tam giác ABC a)GHK và ABCD b) Tìm giao điểm M của SD và GHK c) Gọi E là trung điểm của HK.C/m G E M thẳng hàng