Có: \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{2019}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2019.\frac{1}{2019}\)
\(\Leftrightarrow1+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{a+c}=1\)
\(\Leftrightarrow\frac{c}{a+b}+\frac{a}{b+c}+\frac{b}{a+c}=-2\)