Cho a,b,c>0 và abc=1. CM: \(\frac{\sqrt{a}}{2+b\sqrt{a}}+\frac{\sqrt{b}}{2+c\sqrt{b}}+\frac{\sqrt{c}}{2+a\sqrt{c}}\ge1\)
Cho a, b, c > 0 và a+ b+ c=3
Chứng minh rằng : \(\frac{a^2}{b+2}+\frac{b^2}{c+2}+\frac{c^2}{a+2}\ge1\)
Cho a,b,c>0 thỏa mãn a+b+c=3. CMR: \(\frac{a^2}{a+2b^2}+\frac{b^2}{b+2c^2}+\frac{c^2}{c+2a^2}\ge1\)
Cho a,b,c>0. CM:
\(2.\left(\frac{a}{b+2C}+\frac{b}{c+2a}+\frac{c}{a+2b}\right)\ge1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)
1/ Cho a. b. c>0 và a+b+c= 1
CM: \(P=abc\left(a+b\right)\left(b+c\right)\left(c+a\right)< \frac{1}{64}\)
2/ Cho x, y, z> 0 thỏa \(x^3+y^3+z^3=1\)
CM: \(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}>2\)
3/ Cho x,y >0 và\(x+y\le1\)
CM: \(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge4\)
4/ Cho a, b, c là 3 cạnh tam giác
a) CM: \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\ge6abc\)
b) CM: \(a^3+b^3+c^3\ge3abc\)
5/ Cho tam giác ABC có các cạnh \(a\ge b\ge c\)
CM: \(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
6/ Cho \(x,y\ge1\)
CM: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
Biết : a,b,c>0 và a+b+c=3. CMR
\(\frac{a^2}{a+2b^2}+\frac{b^2}{b+2c^2}+\frac{c^2}{c+2a^2}\ge1\)
Cho a, b, c là ba số dương và a + b + c = 3
Chứng minh rằng : \(\frac{a^2}{b+2}+\frac{b^2}{c+2}+\frac{c^2}{a+2}\ge1\)
CHo a ; b ; c > 0 .và a + b+ c = 3 CM BĐT
\(\frac{a^2}{a+b^2}+\frac{b^2}{b+c^2}+\frac{c^2}{c+a^2}\ge\frac{3}{2}\)
Cho a,b,c >0 CMR
\(\frac{2}{a^2+2}+\frac{2}{b^2+2}+\frac{2}{c^2+2}\ge1\)