Bạn tham khảo:
Bạn tham khảo:
1.Giải phương trình sau: [x-2015] + [2x-2016]= x-2017
2. Cho ba số thực a,b,c khác nhau thỏa mãn: \(a+\frac{2020}{b}=b+\frac{2020}{c}=c+\frac{2020}{a}\). Chứng minh rằng \(a^2+b^2+c^2=2020^3\)
3. Cho a,b,c là số dương thỏa mãn a+b+c=9. Chứng minh: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge1\)
4. Chứng minh bất đẳng thức sau vớ a,b,c là các số dương: \(\left(a+b+c\right)\times\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
5. Cho a >0, b >0, c >0. Chứng minh rằng: \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)
1. Cho a,b,c > 0 thõa mãn abc = 1. CM: \(\frac{a}{a+b^4+c^4}+\frac{b}{b+c^4+a^4}+\frac{c}{c+a^4+b^4}\le1\)
2. CHo 1 < = a,b,c < = 3. thõa mãn a + b + c = 3. CM: \(a^2+b^2+c^2\le14\)
Cho a, b, c > 0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
CMR : \(\frac{a^2}{a+bc}+\frac{b^2}{b+ca}+\frac{c^2}{c+ab}\) ≥ \(\frac{a+b+c}{4}\)
cho a,b,c>0 . Cmr: \(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
(sử dụng AM-GM)
1. Cho 3 số dương x, y, z thỏa mãn x+y+z=1. TÌM GTNN của biểu thức: A=\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
2. Cho a, b,c>0 và a+b+c=3. Tìm GTNN của biểu thức S=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\).
3. CHo x,y,z là 3 số thực dương thỏa mãn đk: x+y+z≤ 6.
CM: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) ≥ \(\frac{3}{2}\).
4. Cho 4 số dương a, b,c, d . CMR \(a^4+b^4+c^4+d^4\) ≥ 4abcd.
Cho a,b,c là độ dài ba cạnh của một tam giác.CMR:
\(a)a^4+b^4+c^4< 2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
b)\(\frac{a}{c}+\frac{c}{b}+\frac{b}{a}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
c)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\)
d)\(ab\ge\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)
Cho a, b, c > 0 và a + b + c = 3. Tìm GTNN của biểu thức \(A=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)
1. Cho a,b,c > 0. Cmr :
\(\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\ge\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
2. Cho a,b,c > 0. Cmr :
\(\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c}\ge\frac{2}{3}\)
xác định các số hữu tỉ a,b,c,d sao cho:
a,\(\frac{1}{x\left(x+1\right)\left(x+2\right)}=\frac{a}{x\left(x+1\right)}+\frac{b}{\left(x+1\right)\left(x+2\right)}\)
b,\(\frac{x^3}{x^4-1}=\frac{a}{x-1}+\frac{b}{x+1}+\frac{cx+d}{x^2+1}\)
c,\(\frac{2x^2-x+1}{\left(x+1\right)\left(x-2\right)^2}=\frac{a}{x+1}+\frac{b}{x-2}+\frac{c}{x-2}\)