123
ai tích mk lên 885 mk tích lại cho
123
ai tích mk lên 885 mk tích lại cho
Cho a,b,c>0 t/m: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2011}\)
CMR:\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{1}{2}\sqrt{\frac{2011}{2}}\)
Cho a,b,c>0 và a+b+c=1 Tìm min A = \(\frac{a^2}{\sqrt{a+b}}+\frac{b^2}{\sqrt{b+c}}+\frac{c^2}{\sqrt{c+a}}\) Tìm max B = \(\frac{a^2}{\sqrt[3]{3b+c}}+\frac{b^2}{\sqrt[3]{3c+a}}+\frac{c^2}{\sqrt[3]{3a+b}}\)
\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}\sqrt{c^2+a^2}=\sqrt{2011}cmr\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{1}{2}\sqrt{\frac{2011}{2}}\)
cho a;b;c>0; a+b+c=6 tìm min
\(P=\frac{a}{\sqrt{b^3+b^2}+4}+\frac{b}{\sqrt{b^3+b^2}+a}+\frac{c}{\sqrt{c^3+c^2+4}}...\)
Cho \(\hept{\begin{cases}a,b,c>0\\\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=2015\end{cases}}\)
Tìm MIN \(A=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\)
1,Cho a,b,c>0 thỏa mãn a+b+c=abc.CMR:
\(\frac{bc}{a\left(1+bc\right)}+\frac{ca}{b\left(1+ca\right)}+\frac{ab}{c\left(1+ab\right)}\ge\frac{3\sqrt{3}}{4}\)
2,Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=3\)
Tìm GTLN của P= \(\sqrt{\frac{a^2}{a^2+b+c}}+\sqrt{\frac{b^2}{b^2+c+a}}+\sqrt{\frac{c^2}{c^2+a+b}}\)
3,Cho a,b,c>0 thỏa mãn a+b+c=3.
Tìm GTLN của Q= \(2\sqrt{abc}\left(\frac{1}{\sqrt{3a^2+4b^2+5}}+\frac{1}{\sqrt{3b^2+4c^2+5}}+\frac{1}{\sqrt{3c^2+4a^2+5}}\right)\)
4,Cho a,b,c>0.
Tìm GTLN của P= \(\frac{\sqrt{ab}}{c+3\sqrt{ab}}+\frac{\sqrt{bc}}{a+3\sqrt{bc}}+\frac{\sqrt{ca}}{b+3\sqrt{ca}}\)
Cho \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=2018\)Tìm min \(P=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\)
cho ba số duong a,b,c tỏa mãn \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2=\sqrt{2011}}\)chứng minh rằng \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{1}{2}\sqrt{\frac{2011}{2}}\)
Cho a+b+c>0 t/m:
\(\sqrt{a^2+b^2}+\sqrt{c^2+b^2}+\sqrt{c^2+a^2}=\sqrt{2017}\)
Chứng minh rằng ;
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{1}{2}\sqrt{\frac{2017}{2}}\)