Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Cho a, b, c > 0. Tìm GTNN : \(P=\sqrt{\dfrac{\left(a+b+c\right)\left(ab+bc+ac\right)}{abc}}+\dfrac{4bc}{\left(b+c\right)^2}\)

Hà Nam Phan Đình
10 tháng 1 2018 lúc 21:57

Áp dụng BĐT Cauchy

\(\Rightarrow\left(a+b+c\right)\left(ab+bc+ac\right)\ge9abc\)

\(\Rightarrow\sqrt{\dfrac{\left(a+b+c\right)\left(ab+bc+ac\right)}{abc}}\ge3\)

\(\Rightarrow P\ge3+\dfrac{4bc}{\left(b+c\right)^2}\)

Ta cần tìm Min của \(3+\dfrac{4bc}{\left(b+c\right)^2}\)

Không mất tính tổng quát giả sử \(b\ge c\)

\(\Rightarrow b+c\le2b\)\(\Leftrightarrow\left(b+c\right)^2\le4b^2\Leftrightarrow\dfrac{4bc}{\left(b+c\right)^2}\ge\dfrac{c}{b}\)

\(b\ge c\Rightarrow\dfrac{c}{b}\ge1\)

Vậy \(3+\dfrac{4bc}{\left(b+c\right)^2}\ge4\)

Dấu đẳng thức xảy ra khi a = b = c

Neet
13 tháng 1 2018 lúc 21:07

Áp dụng BĐT bunyakovsky và AM -GM ta có:

\(\sqrt{\dfrac{\left[a+\left(b+c\right)\right]\left[bc+a\left(b+c\right)\right]}{abc}}\ge\sqrt{\dfrac{a\left(\sqrt{bc}+b+c\right)^2}{abc}}=\dfrac{\sqrt{bc}+b+c}{\sqrt{bc}}=1+\dfrac{b+c}{\sqrt{bc}}\)

\(LHS\ge1+\dfrac{b+c}{2\sqrt{bc}}+\dfrac{b+c}{2\sqrt{bc}}+\dfrac{4bc}{\left(b+c\right)^2}\ge1+3\sqrt[3]{\dfrac{4bc\left(b+c\right)^2}{4bc\left(b+c\right)^2}}=4\)

Dấu = xảy ra khi a=b=c


Các câu hỏi tương tự
Ngọc Sáng
Xem chi tiết
Neet
Xem chi tiết
Sĩ Bí Ăn Võ
Xem chi tiết
Hoàng Hạ Tố Như
Xem chi tiết
Hong Ra On
Xem chi tiết
Hoang Hung Quan
Xem chi tiết
hong doan
Xem chi tiết
Edogawa Conan
Xem chi tiết
Sai Lầm Moon
Xem chi tiết