Cho a, b, c ≥ 0 thỏa mãn: a + b + c = 1
. Tìm GTNN của biểu thức: T = \(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\)
cho a,b >0 : \(a+b>\dfrac{5}{4}\)
tìm GTNN của \(\dfrac{4}{a}+\dfrac{1}{4b}\)
Bài 1: Cho 2 số thực a;b >0 thoã a-b=1. Tìm GTNN của \(M=\dfrac{a}{b}+\dfrac{b}{a}+ab\)
Cho a,b,c,d>0.Tìm GTNN của
S=\(\left(1+\dfrac{2a}{3b}\right)\left(1+\dfrac{2b}{3c}\right)\left(1+\dfrac{2c}{3d}\right)\left(1+\dfrac{2d}{3a}\right)\)
Cho a, b, c > 0; abc ≥ 8. Tìm GTNN của:
\(P=\frac{a^3+b^3+c^3}{a^2+b^2+c^2}\)
1) Tìm GTNN và GTLN của A=2x+\(\sqrt{5-x^2}\)
2) Cho a,b,c >0 thỏa \(\dfrac{1}{a}+\dfrac{1}{c}=\dfrac{2}{3}\)
Tìm GTNN của A=\(\dfrac{a+b}{2a-b}+\dfrac{b+c}{2c-b}\)
Cho a, b, c > 0. Tìm GTNN : \(P=\sqrt{\dfrac{\left(a+b+c\right)\left(ab+bc+ac\right)}{abc}}+\dfrac{4bc}{\left(b+c\right)^2}\)
Cho a,b,c > 0 thỏa mãn ab + bc + ca = 3
Tìm GTNN của \(P=\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\)
Cho a,b,c không đồng thời bằng 0 thỏa mãn \(a^2+b^2+c^2=2\) và ab+bc+ca=1. Tìm GTLN,GTNN của a,b,c
Cho a, b, c > 0 thoa man a + b + c = 3.
Tim GTNN : \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}+\dfrac{1}{a^2+b^2+c^2}\)