Cho a, b, c > 0 thỏa mãn: a2 + b2 + c2 = 3.
TÌm GTNN của biểu thức : \(P=2\left(a+b+c\right)+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho a, b, c > 0 thỏa mãn a + b + c = 3. Tìm GTNN :
\(P=\frac{a^2\left(b+1\right)}{a+b+ab}+\frac{b^2\left(c+1\right)}{b+c+bc}+\frac{c^2\left(a+1\right)}{c+a+ac}\)
1. Cho a,b,c > 0 thỏa mãn: \(3a\left(a+b+c\right)=bc\)
Tìm GTNN: \(P=\frac{b+c}{a}\)
2. Cho a,b,c > 0
CM: \(\frac{1}{a^3}+\frac{a^3}{b^3}+b^3\ge\frac{1}{a}+\frac{a}{b}+b\)
Cho a,b,c > 0 thỏa mãn ab + bc + ca = 3
Tìm GTNN của \(P=\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\)
Cho a,b,c dương và a+b+c=3. Tìm GTNN của \(P=\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\)
3)Cho a,b,c>0 thỏa abc=1.Tìm Max:
\(C=\frac{1}{1+a^2+b^2}+\frac{1}{1+b^2+c^2}+\frac{1}{1+c^2+a^2}\)
1 . Cho 3 số thực dương a,b,c. CMR::
\(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
2 . cho a, b, c là 3 số đôi một khác nhau thỏa mãn :
\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
CMR : \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
1. Cho A = \(\frac{x-3}{\sqrt{x-1}+\sqrt{2}}\). Tìm GTNN của A
2. Cho B = \(\frac{6-x-\sqrt{x}}{\sqrt{x}+3}\). Tìm GTLN của B
3. Cho C = \(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}^{ }}\right)\)tất cả bình phương . \(\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\). Tìm a để C >0, Tìm a để C = -2
HELP MEEEEE
1 . Cho x+y+z=xyz. Tìm Min A= \(\frac{y}{x\sqrt{y^2+1}}+\frac{z}{y\sqrt{z^2+1}}+\frac{x}{z\sqrt{x^2+1}}\)
2 . Cho a,b,c>0 thỏa a+b+c=3, tìm GTNN
\(P=\frac{25a^2}{\sqrt{2a^2+16ab+7b^2}}+\frac{25b^2}{\sqrt{2b^2+16bc+7c^2}}+\frac{c^2\left(a+3\right)}{a}\)