Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sai Lầm Moon

cho a,b,c>0 và a+b+c=3

Tìm max của A=3(ab+bc+ca)+\(\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{4}\left(b-c\right)^2+\dfrac{1}{8}\left(c-a\right)^2\)

Trần Quốc Lộc
18 tháng 6 2018 lúc 9:07

\(A=3\left(ab+bc+ca\right)+\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{4}\left(b-c\right)^2+\dfrac{1}{8}\left(c-a\right)^2\\ =3\left(ab+bc+ca\right)+\dfrac{\left(a-b\right)^2}{2}+\dfrac{\left(b-c\right)^2}{4}+\dfrac{\left(c-a\right)^2}{8}\)

Áp dụng BDT: Cô-si dạng Engel:

\(\Rightarrow A=3\left(ab+bc+ca\right)+\dfrac{\left(a-b\right)^2}{2}+\dfrac{\left(b-c\right)^2}{4}+\dfrac{\left(c-a\right)^2}{8}\ge3\left(ab+bc+ca\right)+\dfrac{\left(a-b+b-c+c-a\right)^2}{2+4+8}=3\left(ab+bc+ca\right)\left(1\right)\)

\(\text{Ta lại có: }ab+bc+ac\le a^2+b^2+c^2\\ \Leftrightarrow ab+bc+ac+2\left(ab+bc+ac\right)\le a^2+b^2+c^2+2\left(ab+bc+ac\right)\\ \Leftrightarrow3\left(ab+bc+ac\right)\le\left(a+b+c\right)^2=3^2=9\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\Rightarrow A\le9\)

Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}a=b=c\\a+b+c=3\\\dfrac{a-b}{2}+\dfrac{b-c}{4}+\dfrac{c-a}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\Leftrightarrow a=b=c=1\)

Vậy \(A_{Max}=9\) khi \(a=b=c=1\)


Các câu hỏi tương tự
Neet
Xem chi tiết
Sĩ Bí Ăn Võ
Xem chi tiết
Hong Ra On
Xem chi tiết
Quách Phú Đạt
Xem chi tiết
michelle holder
Xem chi tiết
Lê Thị Khánh Huyền
Xem chi tiết
Đặng Hà Minh Huyền
Xem chi tiết
Phạm Thúy Vy
Xem chi tiết
Hoàng Hạ Tố Như
Xem chi tiết