1) cho a,b,c dương thỏa abc<1
C/M : \(\dfrac{1}{1+a+ab}+\dfrac{1}{1+b+bc}+\dfrac{1}{1+c+ca}>1\)
2) cho a,b,c không âm thỏa a+b+c=1
CMR \(a^2+b^2+c^2\ge4\left(ab+bc+ca\right)-1\)
3)cho x,y,z,t thỏa \(x^2+y^2+z^2+t^2\le1\)
CMR :\(\sqrt{\left(x+z\right)^2+\left(y-t\right)^2}+\sqrt{\left(x-z\right)^2+\left(y+t\right)^2}\le2\)
Câu 3/ \(\sqrt{\left(x+z\right)^2+\left(y-t\right)^2}+\sqrt{\left(x-z\right)^2+\left(y+t\right)^2}\)
\(\le\sqrt{1+2xz-2yt}+\sqrt{1-2xz+2yt}\)
\(\le\dfrac{1+1+2xz-2yt}{2}+\dfrac{1+1-2xz+2yt}{2}=1+1=2\)
Câu 1/ \(\dfrac{1}{1+a+ab}+\dfrac{1}{1+b+bc}+\dfrac{1}{1+c+ca}\)
\(>\dfrac{1}{1+a+ab}+\dfrac{1}{1+b+\dfrac{1}{a}}+\dfrac{1}{1+\dfrac{1}{ab}+\dfrac{1}{b}}\)
\(=\dfrac{1}{1+a+ab}+\dfrac{a}{a+ab+1}+\dfrac{ab}{ab+1+a}=\dfrac{1+a+ab}{1+a+ab}=1\)
Vậy \(\dfrac{1}{1+a+ab}+\dfrac{1}{1+b+bc}+\dfrac{1}{1+c+ca}>1\)
Câu 2/ Ta có: \(1=\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
Quay lại bài toán ta có:
\(a^2+b^2+c^2+1\ge ab+bc+ca+3\left(ab+bc+ca\right)=4\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge4\left(ab+bc+ca\right)-1\)
Dấu = xảy ra khi \(a=b=c=\dfrac{1}{3}\)