Lời giải:
Ta có:
\(a+b+c=abc\Rightarrow a^2+ab+ac=a^2bc\)
\(\Rightarrow a^2+ab+ac+bc=a^2bc+bc\)
\(\Leftrightarrow (a+b)(a+c)=bc(a^2+1)\)
Tương tự: \(\left\{\begin{matrix} ac(b^2+1)=(b+c)(b+a)\\ ab(c^2+1)=(c+a)(c+b)\end{matrix}\right.\)
Do đó: \(S=\frac{a}{\sqrt{(a+b)(a+c)}}+\frac{b}{\sqrt{(b+c)(b+a)}}+\frac{c}{\sqrt{(c+a)(c+b)}}\)
Áp dụng BĐT AM-GM:
\(A\leq \frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)+\frac{1}{2}\left(\frac{b}{b+a}+\frac{b}{b+c}\right)+\frac{1}{2}\left(\frac{c}{c+a}+\frac{c}{c+b}\right)\)
\(\Leftrightarrow S\leq \frac{1}{2}\left(\frac{a+b}{a+b}+\frac{a+c}{a+c}+\frac{b+c}{b+c}\right)=\frac{3}{2}\)
Vậy \(S_{\max}=\frac{3}{2}\)
Dấu bằng xảy ra khi \(a=b=c=\sqrt{3}\)