Cho a,b,c>0 va a+b+c=1
Tìm GTNN \(P=\frac{1}{25a}+\frac{1}{16b}+\frac{1}{9c}\)
Cho a,b,c>0 CMR: a, \(\frac{a+b}{a+b+c}+\frac{6b+8c}{2a+b}+\frac{3a+2b+c}{b+c}\ge7\)b, \(\frac{a+b}{a+b+c}+\frac{b+c}{b+c+4a}+\frac{c+a}{c+a+16b}\ge\frac{16}{15}\)
Cho a,b,c>0. Tìm GTNN của
A = \(\frac{a+b}{a+b+c}+\frac{b+c}{b+c+4a}+\frac{a+c}{a+c+16b}\)
cho a,b,c>0. CMR
\(\frac{a^8}{b^3}+\frac{b^8}{c^3}+\frac{c^8}{a^3}\ge a^5+b^5+c^5\)
cho số thực a,b,c>0. CMR
\(\frac{8}{\left(a+b\right)^2+4abc}+\frac{8}{\left(b+c\right)^2+4abc}+\frac{8}{\left(c+a\right)^2+4abc}+a^2+b^2+c^2\ge\frac{8}{a+3}+\frac{8}{b+3}+\frac{8}{c+3}\)
cho a,b,c>0 CMR:\(\frac{a^8+b^8+c^8}{\left(abc\right)^3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
cho a,b,c>0 va a+b+c=1. CMR
\(\frac{a}{\left(b+c\right)^3}+\frac{b}{\left(a+c\right)^3}+\frac{c}{\left(a+b\right)^3}\ge\frac{27}{8\left(a+b+c\right)^2}\)
cho \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0.CMR:\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
Câu 1 : Cho a,b,c>0 thỏa mã ab+bc+ac=3. CMR : \(\frac{a}{2a^2+bc}+\frac{b}{2b^2+ac}+\frac{c}{2c^2+ab}\ge abc\)
Câu 2 : Cho a,b,c>0. CMR: \(\frac{2}{a}+\frac{6}{b}+\frac{9}{c}\ge\frac{8}{2a+b}+\frac{48}{3b+2c}+\frac{12}{c+3a}\)