Ta có: \(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=\left[-2\left(ab+bc+ca\right)\right]^2\)
\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2=4\left[a^2b^2+b^2c^2+2abc\left(a+b+c+\right)\right]\)
\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4a^2b^2+4b^2c^2+4c^2a^2\) (a + b + c = 0)
\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\) (1)
Mà \(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2\) (2)
Từ (1) và (2) \(\Rightarrow\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+a^4+b^4+c^4=2\left(a^4+b^4+c^4\right)\)
=> đpcm