a) Cho a, b, c > 0. Chứng minh rằng M = \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) không là số nguyên
b) Cho a, b, c thỏa mãn: a + b + c = 0. Chứng minh rằng ab + bc + ca nhỏ hơn hoặc bằng 0
Cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)(với a,b,c khác 0, b khác c). Chứng minh rằng \(\frac{a}{b}=\frac{a-c}{c-b}\)
Cho a' , b , b' , c là 4 số khác 0 và \(\frac{a}{a'}+\frac{b'}{b}=1và\frac{b}{b'}+\frac{c'}{c}=1.\)Chứng minh rằng abc + a'b'c' = 0
Cho a,b,c >0. Chứng minh rằng:
a)\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>1\)\(1\)
b)\(\frac{a}{c+a}+\frac{a}{a+b}+\frac{c}{b+c}< 2\)
Cho ba số a, b, c đôi một khác 0 và thỏa mãn \(\frac{1}{c}+\frac{1}{a-b}=\frac{1}{a}-\frac{1}{b-c}\)
Chứng minh rằng: b = a + c
Cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)với a, b, c khác 0 ; b khác c
Chứng minh rằng \(\frac{a}{b}=\frac{a-c}{c-b}\)
cho a,b,c>0 Chứng minh rằng\(\frac{a}{c+a}+\frac{b}{a+b}+\frac{c}{b+c}< 2\)
Cho \(a,b,c,d>0\). Chứng minh rằng:\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\).
choa,b,c>0 Chứng minh rằng\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>1\)