a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+c^2=a^2+b^2+c^2
a^2+b^2+c^2-2(ab+ac+bc)=0
6-2(ab+ac+bc)=0
2(ab+ac+bc)=6
ab+ac+bc=3
a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+c^2=a^2+b^2+c^2
a^2+b^2+c^2-2(ab+ac+bc)=0
6-2(ab+ac+bc)=0
2(ab+ac+bc)=6
ab+ac+bc=3
1,Cho các số thực a,b,c thỏa mãn điều kiện : a2+b2+c2=3a2+b2+c2=3 và a+b+c+ab+ac+bc=6a+b+c+ab+ac+bc=6.
Tính A=a30+b4+c1975a30+b4+c2014
Cho a+b+c=9 và a2+b2+c2=53. tính ab+bc+ac
(1) (a+b+c)2=a2+b2+c2+2ab+2bc+2ac(a+b+c)2=a2+b2+c2+2ab+2bc+2ac
(2) (a+b−c)2=a2+b2+c2+2ab−2bc−2ac(a+b−c)2=a2+b2+c2+2ab−2bc−2ac
(3) (a−b−c)2=a2+b2+c2−2ab−2ac+2bc(a−b−c)2=a2+b2+c2−2ab−2ac+2bc
(4) a3+b3=(a+b)3−3ab(a+b)a3+b3=(a+b)3−3ab(a+b)
(5) a3−b3=(a−b)3+3ab(a−b)a3−b3=(a−b)3+3ab(a−b)
(6) (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
(7) a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)
(8) (a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)
(9) (a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2(a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2
(10) (a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc
(11) ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33
(12)ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3
Chứng minh giùm mik hằng đẳng thức kia vs
cho a,b,c là độ dài 3 cạnh tam giác.
a)a2/b2+b2/a2≥ a/b+b/a
b)a2/b+b2/a+c2/a≥ a+b+c
c)a2/(b+c)+b2/(a+c)+c2/(a+b)≥ (a+b+c)/2
cho a,b, thỏa mãn điều kiện a2 b2 c2 1 chứng minh abc 2 1 a b c ab bc ac ≥0
a=(a+b)2/(a2+1)+(b+c)2/(b2+1)+(a+c)2/(c2+1) chứng minh a ko phu thuocj vào giá trị của biến biết ab+bc+ac=1
a, cho a=+b+c =1; a,b,c dương
tìm GTNN: A= a/b2+1 + b/c2+1 + c/a2+1
b, cho a,b,c dương có tổng =2
tìm GTNN; B= a/ab+2c + b/bc+2a + c/ca+2b
c, cho a,b,c dương và a+b+c<1
tìm GTNN: C= 1/a2+2bc + 1/ b2+2ac + 1/c2+2ab
Tìm các giá trị của a,b,c để phấn thức sau được xác định a 2 + b 2 + c 2 ( a + b + c ) 2 + ( a b + b c + c a ) 2 ( a + b + c ) 2 - ( a b + b c + c a )
Cho các số tự nhiên a,b,c thoả mãn: a2+b2+c2=ab+bc+ca và a+b+c=3.Tính M= a2016 +b2015 +c2020
cho ba so a,b,c khac 0 thoa man ab+bc +ac = 0 .tinh B=bc/a2 + ca/b2 + ab/c2