\(12=3a+5b\ge2\sqrt{3a.5b}=2\sqrt{15ab}\Rightarrow ab\le\frac{36}{15}=\frac{12}{5}\)
Dấu "=" xảy ra khi \(3a=5b;\text{ }3a+5b=12\Leftrightarrow a=2;\text{ }b=\frac{6}{5}\)
\(12=3a+5b\ge2\sqrt{3a.5b}=2\sqrt{15ab}\Rightarrow ab\le\frac{36}{15}=\frac{12}{5}\)
Dấu "=" xảy ra khi \(3a=5b;\text{ }3a+5b=12\Leftrightarrow a=2;\text{ }b=\frac{6}{5}\)
Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy:
b) Cho a, b, c > 0. Chứng minh rằng:
c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab
Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.
Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy:
b) Cho a, b, c > 0. Chứng minh rằng:
c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy:
b) Cho a, b, c > 0. Chứng minh rằng:
c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.