A=5+52+...+52016
5A=52+53+...+52017
5A-A=(52+53+...+52017)-(5+52+...+52016)
4A = 52017 - 5
=> 4A + 5 = 52017 - 5 + 5 = 52017 = 5n-1
=> n-1=2017 => n=2018
A = 5 + 52 + 53 + ............ + 52016
5A = 52 + 53 + 54 + .............. + 52017
5A - A = ( 52 + 53 + 54 + ................ + 52017 ) - ( 5 + 52 + 53 + ................. + 52016 )
5A - A = 52 + 53 + 54 + ........... + 52017 - 5 - 52 - 53 - .............. - 52016
4A = 52017 - 5
4A + 5 = 5n-1
\(\Rightarrow\) 4A + 5 = 52017 - 5 + 5 = 52017 = 5n-1
\(\Rightarrow\) n - 1 = 2017
\(\Rightarrow\) n = 2018
Vậy n = 2018
A=5.5^2+...+5^2016
5A=5^2+5^3+...+2017
5A-A=(5^2+5^3+...+5^2017)-(5+5^2+5^3+...+5^2016)
4A=5^2017-5
=>4A+5=5^2017-5+5 =5^2017=5^n-1
=>n-1=2017=>n=2018
mk ko biết đúng hay sai nhé