a) Nhóm 4 số hạng thành 1 cạp ta có:
A = 5.(1+5+5^2+5^3) + 5^5.(1+5+5^2+5^3) + .....+ 5^97+ (1+5+5^2+5^3)
A = 5. 156 + 5^5 . 156 + ..... + 5^97.156
A = 12 . 13.(5+5^5+...+5^97) chia hết cho 13
Vậy A chia hết cho 13
b) A = 5+5^2+5^3+...+5^100
A= 5.(1+5+5^2+5^3+...+5^99)
A= n^2 suy ra 5.(1+5+5^2+...+5^99) = n^2
suy ra (1+5+5^2+....+5^99) chia hết cho 5 vì vế trái có dạng n.n
nhưng 1 không chia hết cho 5 còn 5 ; 5^2 ; 5^3 ... 5^99 đều chi hết cho 5
nên (1+5+5^2+...+5^99) không chia hết cho 5
suy ra 5.(1+5+5^2+...+5^99) = n^2 ( vô lí)
suy ra A không phải là số chính phương
Vậy A không phải là số chính phương.
Nhớ k cho mình nếu bạn thấy đúng nhé!
a) ta có A=5+5^2+5^3+........+5^100
=>A=(5+5^2+5^3+5^4)+(5^5+5^6+5^7+5^8)+..........+(5^97+5^98+5^99+5^100)
=>A=5.(1+5+5^2+5^3)+5^5.(1+5+5^2+5^3)+.............+5^97.(1+5+5^2+5^3)
=>A=5.156+5^5.156+.........+5^97.156
=>A=12.13.(5+5^5+..........+5^97) chia hết cho 13.
Vậy A chia hết cho 13.
b) ta có: A=5+5^2+5^3+.......+5^100
VÌ mỗi lũy thừa trên có số mũ lớn hơn 0 => mỗi lũy thừa trên có chữ số tận cùng là 5.
=> A=(5+5^2)+(5^3+5^4)+.....+(5^99+5^100)
mỗi nhóm trên có cstc là 0.
=> A có cstc là 0.
=>A là số chính phương.
Vậy A là số chings phương.
NÈ CHỮ SỐ TẬN CÙNG MÌNH VIẾT TẮT LÀ cstc