3A=3^2+3^3+3^4+...+3^2010
2A=3^2010-3
2A+3=3^2010-3+3=3^n
3^2010=3^n
n=2010
A=3+3^2+3^3+...+3^2009
=>3A=3^2+3^3+3^4+...+3^2010
=>3A-A=3^2010-3
=>2A=3^2010-3
=>2A+3=3^2010
=>n=2010
3A = 3( 3+32+33+ ... +32009)
3A = 32+33+ ... +32010
3A - A = ( 32+33+ ... +32010) - ( 3+32+33+ ... +32009)
2A = 32010 - 3
Ta có 2A+3=3n
=> 32010 - 3 + 3 = 3n
32010 = 3n => n=2010